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ON INTRINSIC ERGODICITY OF 
PIECEWlSE MONOTONIC TRANSFORMATIONS 

WITH POSITIVE ENTROPY 

BY 

F R A N Z  H O F B A U E R  

ABSTRACT 

We consider a class of piecewise monotonically increasing functions f on the 
unit interval L We want to determine the measures with maximal entropy for 
these transformations. In part I we construct a shift-space ~,~ isomorphic to (I, f)  
generalizing the fl-shift and another shift ~M over an infinite alphabet, which is 
of finite type given by an infinite transition matrix M. ~M has the same set of 
maximal measures as (I, f)  and we are able to compute the maximal measures of 
~M. In part II we try to bring these results back to (I,f) .  There are only finitely 
many ergodic maximal measures for (I, f).  The supports of two of them have at 
most finitely many points in common. If (I, f )  is topologically transitive it has 
unique maximal measure. 

PART I 

O. Introduction 

We consider the dynamical system (/, f), where I = [0, 1], the transformation f 

on I is piecewise monotonically increasing, i.e. there are disjoint intervals 

J1, J2, '" ", J .  satisfying I..) Z = I and flJ~ is strictly increasing and continuous. We 

need two further conditions: 

(a) I..J~.=of-"{jo, j l , . -  .,j.} is dense in /, where 0 = j o < j l <  " "  < j ,  = 1 are 
the end points of the Z's,  i.e. (J~,. �9 -, 3",) is a generator for the dynamical system 

(I,D, 
(b) h top(f) > O. 

Our goal is to determine the set of maximal measures, i.e. the set of those 

invariant measures on (/, f), whose entropy h~ is equal to the topological entropy 

h topff) o f  ( I , f ) .  
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For a dynamical system (X, T) we shall call N C X  a small set, if for every 

T-invariant measure t~ with/z  (N) = 1 the entropy h,, is zero. An isomorphism 

modulo small sets (meaning that the two dynamical systems are isomorphic after 

having taken away a small set from each one) preserves the set of maximal 

measures. (Suppose # is maximal; tz = rvl + ( 1  - r)v2, where v2 is concentrated 

on a small set N and vl on X - N. Because h,~ = 0 we have h,~ = (1/r)h, ,  and 

because/z  is maximal we have r = 1 and/z  = v~. Hence every small set is a null 

set for a maximal measure.) 

We construct two isomorphisms modulo small sets 

: (I, f )  ~ (27, ~)  

where E~ is a subshift of 2 :  = ({1, �9 �9 n} N, or) and or the shift transformation, and 

: 

where Er is the natural extension of E~ (there is a 1-1 correspondence between 

the set of invariant measures of a shift space and that of its natural extension 

leaving the entropy invariant) and EM is a finite type subshift of C z, where C is a 

countable compact set (C ~{1, ~, g,~ �9 �9 . ,0}CR) .  M denotes the corresponding 

infinite transition matrix. 

Hence we have that (EM, or) has the same set of maximal measures as (I, f )  via 
p,..-->/z o 9 - 1 = :  v a n d  J) ----> V 0 l# -1. 

X~ = {x E 2+. : a x- <- XmX,+lXm+2"'" <-- b ~" } 

for certain a~,b ~ E E+, ( l < i - < n ) .  = is with respect to the lexicographic 

ordering in E+,. This is a generalization of the fl-shift (el. [5]). E~ and E~ have 

already been constructed in [2]. The fl-shift case of ~ and ~ u  can be found in [3] 

and [6]. The transformation u--> u M  is an operator  on the space of all 

continuous summable functions u on C with 1-norm. Let r (M)  be the spectral 

radius of this operator.  We prove that 

htop(~ff) = log r ( M )  = l iml log l lM ~ II1 

and therefore htop(f) = htop(E~) = h t o p ( ~ M )  = log r ( M ) .  

If M is not irreducible, we may divide M into irreducible submatrices 

M 1, M 2, M 3 ,  " ' "  . For every submatrix M ~ there is a corresponding subshift E~, 

of EM. 

The maximal measures of a dynamical system form a compact convex subset 

of the set of all invariant measures together with the weak* topology. Its 
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extremal points are the ergodic maximal measures and such measures are always 

concentrated on irreducible subsystems. Hence it suffices to consider the XM, 's. 

We prove that every ergodic maximal measure is concentrated on a XM, with 

r (M ' )  = r(M) and that on such an M'  there is at most one maximal measure 

which is Markov given by 

Pjk = M~kok 
r(M)vj and 7rj = ujvj, 

where u and v are vectors satisfying uM' = r(M')u,  M~v = r(M~)v, ul = 1 and 

the inner product (u, v ) =  1. 

Hence to determine the set of maximal measures of (/, f )  one has to look for 

the irreducible submatrices M'  of M satisfying r (M ~) = r(M). To do this we 

have to investigate the structure of M. This problem is left for the second part of 

this paper. 

1. The isomorphism 

Let (I, f )  be the system described above satisfying (a). Define 

i : I - ~ { 1 , 2 , . . . , n }  by i (x) - -  k if x EJk. Define ~r :I--~E*~={1,2, . . . , n }  N by 

( x  ) - -  i ( x  ) i t f ( x  ) ) i ( y 2 ( x  ) )  . . . . 

Because of (a) ~ is injective. Define 

+ _ _  + (1.1) E l -  ~v (1) CE~. 

It is easy to see that t r o y  = ~0 of  and that q~ and ~-llq~(I ) are measurable. 

We introduce the lexicographical ordering on ~+~ and ~ .  

LEMMA 1. X < y in I r q~ (x) < ~ (y) in "~+~ for x, y E I. 

PROOF. Set x = ~(x) ,  y = ~(y) .  Choose k so that x, = yi (0 -< i -< k -  1) and 

xk~ yk, i.e. f ' ( x )  and [ ' ( y )  are in the same J ,  for 0 -< i <- k - 1. Because [IJm is 

strictly increasing, x < y ~ f k ( x ) <  fk(y)  and this is equivalent to xk < yk, i.e. 

x < y .  

LEI~tA 2. E ~ -  ~ ( I )  is countable and hence small. 

PROOF. Let x E E~ - ~ (I), i.e. there is a sequence (rk) in I with ~ (rk) ~ x in 



216 F. H O F B A U E R  Is rae l  J .  M a t h .  

Z~. ~o(rk) is a Cauchy sequence, hence also rk, since the topology of Z~ is 

generated by cylinder sets o[ioi," �9 �9 i~_~] and these sets correspond to intervals 

C I, whose diameter decreases to 0 as k ~ oo (cf. (1.2) below). Let y = lim rk in I 

and y = ~0(y)gx,  since x ~  ~o(I). Let m be the smallest integer with y , ~ x . ,  

(m _-> 0), i.e. fr, (y) E Jp and there is an N with fm (rk) E Jq for k _-> N ( p J  q). But 

fm(rk)-~f'~(y) in I. Hence f ~ ( y )  has to be an endpoint of Jq, which belongs 

already to J,. Hence 

+ [ ] - m  ' t  "P " f  

~ = 0  

where 

j ;  = l i m  ~p ( t )  

This set is countable. 

Hence we have 

if j, EJ~_, and j ; = l i m q , ( t )  if j ,~J, .  
, "rh 

THEOREM 1. q~ : (/, f)--~ (E~, or) is an isomorphism modulo small sets. 

To give a description generalizing that of the /3-shift we have to introduce 

some more notation. 

o[XoX, �9 �9 �9 x,,-,] = {y E 27 or Z:: y, = x~ for 0 -< i -< m - 1} 

denotes a cylinder set. 

Sxo~,  . . . . .  _ = & n/-ILl n . . .  n , r  c t .  

We have 

( 1 . 2 )  q~ - l ( o [ x o  �9 �9 �9 Xm-l]  ) ~" Jxo. . . . . . .  ~D (Jxo. . . . . . .  ) : o[Xo " ' "  Xm-l] .  

Define for k = 1, 2,. �9 n 

a k= lira ~p(t) (=~P(jk-,) i f j k - , E J k ) ,  
,Es~,t ~, ik-~ 

(1.3) 
b k =  lim ~o(t) (=~o(h)  if j k E A ) .  

,~Jk, t  "f ik 

Set A ={a ' , . . . , an} ,  B ={b', . . . ,bn}.  Remark that a t and b k begin with k. 

Define Gxo. ...... CZ~ by ([ , ] denotes a closed interval in Y.~ or Z :  with 
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respect  to the lexicographic  order ing)  

G~o = [~,,~o, ~,t,~ol = ~ , ( [ ,co ,  t,~o]), 

(1.4) 
G~o ........ = ~ , ( [a ' - - , ,  b~--,l n G~o ....... ), 

and  G'Ji;o....g,_ 1 by the  s ame  formulas ,  but  as subsets  of  X, +. R e m a r k  that  G~ o. . . . .  , -  

and  G~o ....... are e m p t y  or intervals  in ~ or ~,+ respect ively.  

LEMMA 3. G~o . . . . . . .  7- O'rtl(0[X0" ~ "Xr?l--l]) (0[X0" " "Xrll-l] C]~)"  

PROOF BY INDUCTION. T h e  case m = 1 is trivial. 

~ o  . . . . . . .  = ~,(o[X.._,]  n o ~  . . . . . . .  ) 

= ~ , (o[~. . -1]  n , ~ ' - ~ ( o I X o . . .  x . ._~]) )  

= ~ , ' ( o [ X o .  �9 �9 x ~ . - d ) .  

THEOREM 2. T h e  fo l lowing  are equ i va l en t :  

(i) x E Xff, 
(ii) a ~- <= o'mx <-_ b ~- for  each  m >= O, 

' for  each  m > 1. (iii) o-"x E G~o ....... = 

PROOF. W e  show (i) ~ (ii) :~ (iii) ~ (i). 

Let  x E E~. Then  cr"x ~ E~, i.e. (rmx = l i m ~ ( y k )  for  sui table yk E Jxm, i.e. 

jxm_,----yk--<jxm. Because  of L e m m a  1 we have  a t-  _-< q~(yk)_- < b x-, i.e. (ii). 

W e  show the next  step by induction.  Because  both  a xo and b ~o begin with Xo we 

have  that  x ~ [a ~~ b x~ implies  trx E G ~  = (r([a ~~ b~~ Suppose  o-rex E G~o ....... �9 

Because  of (ii) we have  t r "x  E [ax-, b x- ] CI G '  This  set is a subinterval  of  xO'" "xm - 1  �9 

[a~-, b x- ] and hence  its endpoin t s  both  begin with x,,, because  a ~ and bX- do. 

T h e r e f o r e  o- '§ E o-([a ~-, b ~ ] f'l G~o . . . . . .  ) = G~o ..... . This  is (iii). 

For  the  third implicat ion we have  to show x E E~, i.e. there  are yk E I 

satisfying q~(yk)---~x in E +. Choose  y k E J ~  o ....... . Then  ~0(yk)~o[Xo ' ' 'Xk-1] ,  

hence  q~ (yk) ~ x. It suffices to show Jxo. ...... ~ 0 .  If this set is e m p t y  we have  also 

Gxo. . . . . . .  = trk(q~(J~o ....... )) = O (cf. (1.2) and  L e m m a  3) and hence  G~o ....... = O 

(cf. (1.4)). This  contradic ts  (iii). H e n c e  (i) follows. 

W e  conclude  this sect ion with a l e m m a  we shall need  later.  

LEMMA 4. L e t x E ~ + t  a n d a ,  b E A  ( o r B ) .  I f  

(1.5) xsxj+l" " xi+, = aoal"  " a, 
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and 

(1.6) 

then 

(1.7) 

xj+~xj+,+l �9 �9 �9 xj . . . .  = bob1" �9 �9 b, 

xj+, �9 �9 �9 xj . . . .  = b o "  �9 b, = a,a,+l �9 �9 �9 a . . . .  

PROOF. S u p p o s e  (1.7) is n o t  satisfied,  i.e. t h e r e  is an  i (r =< i -< r + s - 1) such 

tha t  xj+, . . .  xj+, = b o " "  b, = a, . . .  a,+, a n d  xj+,+~ = b i + l >  a,+,+, (cf. (ii) of 

T h e o r e m  2 a n d  (1.5)), i .e.  ( r ' a  > b. B u t  this  aga in  con t r ad i c t s  T h e o r e m  2, s ince  

( r ' a  E X~. T h e  case  a, b E B is s imi lar .  

Th i s  l e m m a  impl i e s  

(1.8) 
two initial segments  o f  points in A (or B )  contained in 

x E "Z+1 are disjoint or the one contains the other. 

2. The isomorphism 

B e f o r e  we go  in to  it we  c o n s i d e r  an  e x a m p l e .  D e f i n e  [ : I  ~ I by 

16 1 r~x + s  for  0_--<x < 3  

f ( x )  = 

V ' x - - ~  for  3 < x = < l .  

O n e  easi ly sees  tha t  a ~ = 111121121 . . . ,  a 2 = 2a  ~, b ~ = l b  2 a n d  

b 2 =  2 1 1 2 1 1 2 1 1 2 . . . .  W e  d r a w  a d i a g r a m  for  X~ us ing  the  G~o ... . . . .  : 

F o r  o u r  e x a m p l e  we  get  us ing  (1.4) for  the  c o n s t r u c t i o n  (we h a v e  wr i t t en  a for  a 

a n d  b for  b 2) 
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Every  path in this diagram ending not with an empty  set corresponds  to an 

e lement  of Z7 writing 1 if the way goes up and 2 if the way goes down. 

We define $ first on 27 by 

(2.1) ~b(x) = (x0, G~o)(Xl, G,~,)(x2, G~,0" " " �9 

It means we represent x not by the edges lying on a way in the above diagram, 

but by the vertices lying on this way. 

By (1.4) one easily sees that each G~o ....... is of the form [crita, trlb], where 

a ~ A, b E B, a~-1 = b~-1 = x,.-1, ak-j = b~_~ (I <_- j _-< min(k, I)) and that G,~ ..... is 

then 

O 

(2.2) [o'a'-, o'/+lb ] 

W e  set 

[o-it +la, t /+ lb ]  

if xm < ait+~ or xm > bz+l, 

if x,, = ait+l and xm < b~+l, 

if xm = bt+l and xm > ak+l, 

if xm = ait+1 = bit+l, 

[tra ~-, trb x ] if ak+l < xm < b~+x. 

D = {(i, [o'ita, o"b]) : a ~ A, b E B, i = ait-1 = b,-l, k, l _>- 1 

(2.3) and ak-j = b,_j for  1 _-< j =< min(k, 1)}. 

Then  ~ is a map f rom 27 to D ~, but  the image ~b(2~) is not cr-invariant. So we 

have to change  over  to the natural  extension 

2 i  = {x E E .  = { 1 , . . . , n }  z :xitxk.~--- E 2+r for  each k ~ Z}. 

Now let x E Et and set for  each k _-<0 

o r  

y It = * (xitxit +i"'" ) = (xit, G,,)(xk +,, G ...... )"" E I"[ D, 
It 

i.e., we have the diagram 

yO yO yO yO . . . .  yo 

y-_~ yo 1 y~l y~l y~l . . . .  y - l  

y-~ y-~ yo 2 y~2 y~-2 yj2 .... y-2 

~  , . .  , , ,  . , ,  

Let  N be the  following invafiant  subset of E/:  
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N = { x  E Et  : : l m  E Z ,  so that  V j  < m,  : l k  _-<j with xk �9 �9 �9 x , .  = a 0 - .  �9 a , . - k ,  

a E A U B and �9 �9 �9 x, , -~xm is not per iodic  for  each m } 

LEMraA 5. F o r  x E Y,: - N there  is a y E D z w i t h  y k  _._>y ( k  ---> - oo), i.e. t he  

c o l u m n s  in  t he  d i a g r a m  a b o v e  are  u l t i m a t e l y  c o n s t a n t .  

PROOF. W e  show that  for  every m E Z there  is a K with y ~ = y~ for  all i _-> m 

and all k ~ K. 

As  xt~ N there  is a K such that  for  each k _-< K we have  xk " �9 x , , ~  a 0 "  �9 am-k 

for  every a E A to B or �9 �9 �9 Xm-lXm is per iodic  for  an m and there  is a per iodic  

point  in A t.J B having the  same  per iod  (if not,  we have  the first case). W e  

consider  the first case. For  each k _-< K divide XkXk+~ " " " into initial segments  of  

points  in A. This  can be  done  in a unique way start ing at the beginning of 

x ~ x k + ~ . . ,  and choosing every such initial segment  maximal  (cf. the r emark  af ter  

(1.3)). Let  l be  a k _-< K such that  the first initial s egment  x t x z + l "  .x ,  of a x, of the  

above  division has the largest  possible  r (r < m) .  Then  the first initial s egment  

xk �9 �9 �9 xq of aX~ for  all o the r  k _-< r satisfies q _-< r. For  k < l this is because  we 

have  chosen l in such a way. For  I < k _-< r (r _-> K )  this is because  of (1.8). H e n c e  

we have  for  all k _--< K (in fact for  all k _-< r) 

1)... (xo[o"a',, ]) 1) ..- 

The same  a rgumen t s  hold  if we divide X k X k + l  ~ " " into initial segments  of  points  in 

B. W e  find an s < m such that  for  all k - < K  

y k = ( x k , [  ,o 'b '~])  " " ( x , [  ,o'Ob~']) (X,+l,[ , t r b " + ' ] ) " ' "  

H e n c e  for  all k _-< K the  beginning points  of  the above  intervals  do not depend  

on k f rom the (r + 1)st coord ina te  onward  and the endpoin t s  of these intervals  

f rom the (s + 1)st coord ina te  onward  (of. (2.1) and (2.2)). As  r < m and s < m we 

have  p roved  the  first case. 

T h e  second case, where  �9 �9 �9 xm_,x , ,  is per iodic  for  an m and there  is a per iodic  

point  in A tO B having the  same  per iod,  is easy and omi t ted .  It may  happen  that  

for  the  beginning points  of  the above  intervals  the  first case occurs and for  the  

endpoin t s  the  second one,  or  vice versa.  

Now we define (y as in L e m m a  5) 

(2.4) d / : E / - N - - * D  z by q~(x )=y .  

By (2.2) one  sees easily that  a given e l emen t  (i, [trka, trtb]) of D may  be  fol lowed 

in a point  y ~ ~O(Et - N )  by 
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(2.5) 

(ak,[crk+la, crb"~]), ( i , [o 'a ' , tyb '])  for  ak < i  < b , ;  

(b,, [era b', O'l+lb]) if ak < b,, 

(ak, [o'k§ o't+lb]) if ak = bl. 

Denote  the corresponding transition matrix with index set D by M'.  r is given 

by the projection to the first component  Of the elements of D. 

LEMMA 6. Le t  y E D z satisfy (2.5). T h e n  x = d/- i (y)  E Es. 

PROOF. We have to show a xk <= XkXk+l" " " <= b xk for all k E Z ((ii) of Theorem 

2). Suppose yk = (xk, [o"a, trSb]), a E A, b E B. Then xk = a,_~ = bs-~ (cf. (2.3)) 

and hence a xk =< tr ' - la  and b xk => cr'-~b ((ii) of Theorem 2). Therefore  it suffices 

to show 

(2.6) o"a =< Xk+lXk+2" " " < ~r'b. 

Because of (2.3) and (2.5) we have a, _-< xk+l < b~. If equality does not hold our 

lemma is proved. Suppose for t _-> 1 

(2.7) a,a,+l �9 �9 �9 a . . . .  1 = Xk+,Xk+2"''Xk+,. 

We have to show a,+, =< xk+,+l. Because of (2.3) and (2.5) it follows from (2.7) that 

yk+, = (Xk+,, [tr'+'a, ]). As above we have from (2.3) that a,+, < xk+,+~. 

The same arguments show that Xk*lX~+2"'" < tr'b. 

It is easy to see that r and $-~ are measurable and that r commutes with the 

shift transformation. Hence ~0 is an isomorphism between Xt - N and the finite 

type subshift of D z given by (2.5). 

We make D z compact. D is a countable set. Let C be its one-point 

compactification by adding say 0. We take the closure of $(Xt - N)  in C z. This is 

again a finite type subshift of C z with transition matrix M (index set C) 

satisfying M I D = M'.  We denote  it by XM. It is easy to see that one gets M by 

adding to (2.5): 0 follows only after 0 and 0 may be followed by every element of 

D which may itself follow after infinitely many elements of D and by 0. 

Hence XM - qs(Xt - N)  consists of all points, for which there is an m E Z with 

y~ = 0 for all k _-m. Hence 

LEMMA 7. EM -- qS('Zt -- N )  is smal l .  

To prove that N is small we remark that N = [.,IN,, the union taken over all 
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a E A O B, which are not periodic, where 

N. = U ~' h 0 cr-'(otaoa,'"a,-~]). 
j E Z  I = 1  i = I 

It suffices to prove that N, is small (No is invariant). This is done in [3] for the 

/3-shift and exactly the same proof works for N, using Lemma 4 or (1.8) instead 

of the lemma used there. Hence 

LEMMA 8. N is small. 

All this together gives 

THEOREM 3. 0 : (Xs, tr)--* (X~, or) is an isomorphism modulo small sets. 

3. A formula for h,op 

To compute the topological entropy htop(X~)= lira log ~ ,  where nk is the 

number of admissible blocks of length k in X~, we introduce the following sets of 

blocks, where k => 1 and i E D:  

X~ = {XoX~... xk-~ : o[Xo" �9 �9 xk-~] # O in Z~, $ ( x o ' "  xk-~) ends with i}. 

Set N'k = card~rJ, and Nk = (N~),~D, a vector in U. 

We obtain the set .h'~§ by adding an xk to x o ' ' ' x k - ~ E  I, Ji./f~, such that 

0[Xo''" xk] CZ~ is not empty and that $ (Xo ' ' '  xk) ends with ]. This is possible for 

all blocks x 0 " -  xk-~ in N~, if i may be followed by ] in X~, i.e. M, i = 1. Hence we 

have, as xk has to be equal to the first component of ] (cf. (2.1)), 

N~+~ = ~ N~ = ~ M~jN~, i.e. Nk§ = NkM'. 
i, Mij~l  i E D  

From this one gets Nk = N~M 'k (Nt = ( 1 , . . . , 1 , 0 , 0 , . . . )  n ones). As nk = 

link = X,~oNL (Nk has only finitely many entries # 0 )  we have 

(X § l l  glJN 11 11 gJlM 11 h,op t =l i ra  o tM 'k ~=l im o ,k 1 

because with increasing k, N~M 'k = Nk becomes positive on every coordinate 

and hence on every irreducible subset of the index set D of M'.  We have 
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THEOREM 4. h~op(f) = h,op(X;) = h,op(XM) = log r(M'). 

REMAP, X. If we consider M as an operator  on the space of all continuous 

summable functions on C ~ { 1 , � 8 9  with 1-norm, then IJMklll= 

II M 111, hence r(M) = r(M') and h~op(X~) = r(M). In what follows we can restrict 

ourselves again to D and M',  because X ~ -  Y~. is a nullset for every maximal 

measure. We have introduced C and M only to get a compact dynamical system. 

4. Eigenvectors of M' 

Now divide M'  into irreducible submatrices M 1, M 2, M3, �9 �9 �9 (if we divide M 

into irreducible submatrices we get the same M " s  plus the 1 x 1 matrix indexed 

by {0} = C -  D) .  We are interested in ergodic maximal measures, which are 

concentrated on subshifts X, ,  of X~ corresponding to the submatrices M'. Fix an 

M'  and denote  it by L and its index set by E CD. What follows is a slight 

generalization of a result in [6]. Suppose there is a maximal measure /x 

concentrated on EL. 

LEMMA 9. /x is a Markov measure given by 

/.* (0[yo" �9 �9 yk-1]) = *r, oP, o,,P,,,2"'" P,,_2,,_, 

for suitable 1r = (m),~n and e = (P~j)(,.,~• satisfying 

m >= O, P~j >-_ O and P , j = 0  if L,j = O, 
(4.1) 

~_~ ,r~P,j = zt,, ~_~ 7r~ = 1, ~ P,j = 1 for each i E E. 
i C E  i C E  j E E  

PROOF. Set zri =/~(o[i]) and P~j =/Z(o[/]])//z(o[i]). Then (4.1) is satisfied. Let 

m be the corresponding Markov measure. 

Set a = {0[i]},~E.-Then 

h~, = n~,(ot J V or-kot)<-~n~,( ~ Jo'-'ot)= Urn(or Jot-lot)= hm 
k ~ l  

and equality holds only if/~ = m by a theorem of Parry as in [6]. Because ~ is 

maximal we have / z  = m is Markov. 

Now assign to every pair (i ,j)  E E x E with L,-j = 1 a variable X~j satisfying 

(4.2) X,j>-O, ~ X~j= ~ X~, ( i E E ) ,  ~ X , j = I .  
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Set X = (X~j). There  is a 1-1 cor respondence  be tween (rr, P )  satisfying (4.1) and 

X satisfying (4.2) via X~j = rr, P ,  and 7r~ = ZkX~k, P~j = X~j/EkX~k. The  ent ropy of 

is H(zr,  P )  = - X~.j 7r~P, log P,. Define 

the en t ropy  of X. Then  corresponding (7r, P )  and X have the same entropy.  Now 

every maximal measure  concent ra ted  on EL corresponds  to an X satisfying (4.2), 

for  which H(X)  attains its sup remum log r (M' ) .  

LEMMA 10. Suppose H attains its supremum in X. Then X, > O for every ( i , j )  

with L~j = 1. 

PROOF. Suppose X~i, = 0 and L~,, = 1. Because  of the irreducibility of L we 

can find i2, i 3 , "  ", i, = io such that L~,~,§ = 1 (0 _-< l _-< r - 1) and not all X~,~,§ = 0. 

Wi thout  loss of general i ty  assume X~,~ ~ 0. Set K = {(i~, is+a) : 0 _-< l _<- r - 1}. Then  

by (4.2) ZjXj,, = ZjX,,; _--> X~,~ > 0. Define X'(e) by 

= I  X~J(l+re) (i,j)~:K, 

X', L(X,j+e)/(l+re) ( i , j)EK; 

X'(e) satisfies (4.2). Set f(e) = H(X ' ( e ) ) -H(X) .  One  has, because of X~,, = 0 

and ZjXj , ,>0 ,  f'(e)--~oo as e--~0.  Hence  there  is an e > 0  with H(X'(e))> 
H(X), a contradict ion to X maximal.  

Now we know that H attains its sup remum only in the inter ior  of its domain  

de te rmined  by (4.2). By Lagrange ' s  me thod  the function 

has to satisfy for a maximal X :  

( x )  = o, = 0 .  ax, ,  (x) = o, aA, 

This gives 

(4.3) ~ X ,  = exp(h,  - A, - K)X,,, Vr, s with L,, = 1; 
j , L ~  = 1 

(4.4) Z X~, = Z Xj,, Vi  E E ;  
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(4.5) ~ X~i = 1. 
i,j, L q  = 1 

By (4.3) we have 

exp(As - A, - K)X,  = exp(A, - A, - K )X,, if L,, = L ,  = 1, 

i.e. exp(As - A,)X,s = 2(., and hence  summing over  t with L .  = 1, 

exp(A,)X,, Z exp(-)t ,)= Z X. 
t , L  n = 1 t, Lrt  = 1 

and again by (4.3) 

exp(A,)X,, Y~ exp(- A,) = exp(A~ - A, - K)X,, 
t , L  n = 1 

if L . = I .  

Because X ,  > 0 we get 

(4.6) ~ L. exp( - A,) = exp(- K)exp( - X,), Vr E E. 
t E E  

Again (4.3) gives 

exp(A,) ~ X,j = exp(A, - K)X,  if L,, = 1, 
i 

or  

exp(A.) ~ X, i = e x p ( & - K )  ~ X,. VsEE,  
r , L ~ l  j ,  Lrj = 1  r, L n  ~ 1 

i.e. 

(4.7) (exp(A,) ~, X,j)L,=exp(--K)(exp(A 0 ~ X,~). 
r E E  J, Lri  = 1  r, L r s =  l 

H e n c e  for  the eigenvalue e x p ( - K )  the matrix L has a left e igenvector  u 

(u, = exp(lt,)Y.jX~) by (4.7) and a right e igenvector  v (v, = e x p ( -  A,)) by (4.6) 

satisfying (u, v) = Er.jX, = 1. Fu r the rmore  e x p ( -  K) has to be the spectral  radius 

)t of  L. We  have got that,  if there  is a maximal  measure  (~-, P )  concen t ra ted  on 

EL, there  exists such a pair  (u,v)  of eigenvectors  of L as above  (for the 

e igenvalue )t = r(L)) satisfying (u, v ) =  1. One  gets 

(4.8) 7r, = u,v,, Pq = L,jvffAv,. 

This mehsure  has en t ropy  log A = log r (L) .  Hence  by its maximali ty r ( L ) =  
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r(M'). On the other hand one sees easily that (~-, P) given by (4.8) gives rise to a 

measure tz on EL with entropy log A. Hence we have 

THEOREM 5. Every ergodic maximal measure of "2,~ is concentrated on a "ZM, 

satisfying r (M')  = r(M). For such an M'  there is a 1-1 correspondence between the 

set of maximal measures on ~,~, and {(u, v):  uM' = r(M')u,  M'v  = r(M')v,  

(u, v) = 1, u~ = 1}. 

Now we can use a result of Krieger [4] for the irreducible submatrices M k of 
M' satisfying r (M k) = r(M'). 

Suppose /xl and /22 are two ergodic maximal measures on X~k. Then 

/z =�89 is also maximal. Let v be the Markov measure given by 

P~j =tZ(o[ij])/tZ(o[i]) and 7ri =/X(o[i]). v is ergodic by theorem 7.16 of [1], 

because Pij is irreducible (/X(o[ij])>0 for all (i , j)  with M~= 1 by Lemma 10). 

Hence v#/x,  because /z is not ergodic. By the proof of Lemma 9 we have 

h~ > h~, a contradiction to the assumption that /z~,/22 and hence also /z have 

maximal entropy. Hence we have 

THEOREM 6. I[ M'  satisfies r (M' )  = r(M'), then there is at most one maximal 

measure on XM,, which is Markov given by (4.8). 

REMARK. From this and Theorem 5 it follows that for such an M ~ there is at 

most one pair of vectors (u, v) satisfying the conditions in Theorem 5. I have also 

a direct proof for this result using the special structure of M', but this is much 

more complicated than Krieger's method. 

Summarizing the results about X~, we get 

THEOREM 7. (i) h,op(XM,) = log r(M'). 

(ii) Every ergodic maximal measure is concentrated on a Y~M, satisfying 

r ( M ' )  = r(M'). 
(iii) For every such M'  there is at most one maximal measure concentrated on 

~ M ~, 

PART II 

The second part of this paper is devoted to the investigation of the matrix M'  

found in the first part. 



Vol.  34, 1979 I N T R I N S I C  E R G O D I C I T Y  227 

First we in t roduce  a more  convenient  nota t ion for  the index set D of M ' .  Then  

we look for  the irreducible submatr ices  M ~ and de te rmine  the corresponding 

invariant  subsets of (I ,[)  getting a nice picture of the s t ructure  of this 

t ransformat ion.  We deduce  that (I ,[)  has only finitely many ergodic maximal 

measures  and de te rmine  their  supports.  If (/,.f) is topologically transitive, it has 

unique maximal  measure ,  which is positive on every open subset of L 

5. We in t roduce a new notat ion for  the index set D of M' .  Cons ider  

A = { a l ,  . - . , a " }  and B ={b~, . . . , b " }  (cf. (1.3)). Take  an a ~ and divide it into 

initial segments  of b j 's in the following way. a ~ begins with an initial segment  of 

b' of length at least one. D e n o t e  the length of this segment  by r(i, 1). i.e. a~ = b~ 

for k = 0 , . . . ,  r(i, 1 ) -  1 and a'r(tl)~ b',(,.,. At  this r(i, 1)-th coordina te  there  

begins an initial segment  of b j for  j = a~r(,,1) of length r(i, 2) _-> 1, and so on. So we 

get a division of a ~ into initial segments  of bJ's in a unique way. For  m => 0 we 

have 

i ~ a i a,~,,, ...... ,.,,)+~ = b~, 0 < k < r(i, m + 1 ) -  1, j = ,(,,, ...... (,.,,), 
(5.1) 

a ',(,., ...... (,.,. +1) ~ b~(,.,. +,, 

Similarly we divide b j E B into initial segments  of a~'s and deno te  their  lengths 

by sO, k )  for  l<=j<=n and k _->1. 

We have r(i, 1) = s(i, 1), 1 =< i =< n and r(i, k)  _-> 1, s(j, k )  _-> 1. We can assume 

r ( i , k )<oo,  s ( j , k )<oo .  If r ( i , k )=oo  for  some i ,k  we have for  m =  

r(i, 1)+ . . -  + r(i, k - 1), o - ' a  ~ = b j for  j = a~, i.e. o[a~ " .  a],] consists of one  

point.  Substituting a '  by 

ci' = ao . . . ( a ~  + 1)a~ . . . ( a , ~  + 1)a~ . . .  

we get a new shift space forbidding the block a ~ . . .  a~, i.e. we take away 

countably many points. No te  that a ~' + 1 _-< b')o.k-, ----< n, where  j = a i,(~.,) ...... (,.k-2). 

LEMMA 11. There are maps R, S : N ~ N such that 

r ( i , m ) = s ( j ,  1)+ . . .  + s ( j , R ( m ) ) ,  j=a',(i.1)+ ..... (,.,.-1). 

s(j, m )  = r(i, 1) + . . .  + r(i, S (m)) ,  i = bJ, u.,+ ..... o.,,-1). 

P R O O F .  

(5.2) 

We prove  the first equat ion.  We have by (5.1) 

a t ,(,a)§ ..... (..,.-1)+k -- b~, 0 -< k < r(i, m), 

a',(~l)+.. +,(~,,) < b J,(~,,). 
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Choose l so that 

(5.3) s 0 , 1 ) +  . . .  +s(j,l)<--_r(i,m)<s(j,  1)+ . . .  + s 0 , / + l  ) 

and set R ( m ) =  I. This is uniquely determined.  We have by definition that 

s (j, 1) + . . .  + s (j, R (m)) =< r (i, m ). Suppose 

(5.4) s(j, 1)+ . . .  + s(j, R ( m ) )  < r(i, m).  

By (5.3) we have r ( i ,m)<s ( j ,  1)+ . . .  + s ( j , R ( m ) +  1) and by (5.1) 

b~.l) ...... 0,R~,.))§ = a~ fo r s ome  h a n d 0  < k < s ( j , R ( m ) +  1). 

Hence  

(5.5) b/, = a~,-sq.1) ..... ,~.,~,,)), s 0 , 1 ) +  . . .  + s ( j , R ( m ) ) < - k  <=r(i,m). 

We get by (5.2) and (5.5) 

i = a h 
a r(i,l)+...+r(i, ra- l)+k k - s ( j , l ~  . . . . .  s ( j , R ( m ) )  

for sO, 1) + . . .  + s(j, R (m)) =< k < r(i, m)  (this set of k ' s  is not empty because of 

(5.4)) and 

i h 
a r ( i , l )+ . . .+ r ( i ,m)  ~ a r(i,m)--s(j,l) . . . . .  s(j,R(m)). 

This is a contradiction to a ~  ~ (cf. Theorem 2). This proves the converse 

inequality and the lemma is proved. 

LEMMA 12. Let y = (a~k_~,[crkai, crtbJ])~D such that it occurs in "ZM, and 
suppose k >- I. There is a unique m such that 

r(i, 1)+ . . .  + r(i ,m - 1 ) < k  =< r(i, 1)+ . . .  + r(i ,m - 1 ) +  r(i ,m). 

Then 
( i)  l = k - r( i ,  1) . . . . .  r(i, m - 1) and j = a ' ~ _ , ,  

(ii) if k = r(i, 1)+ . . .  + r(i ,m) then y has successors (j',[crk+~a',crbs']), j ' =  
a~, (i', [o'a", O ' ' ( i ' m ) + l b J ] ) ,  i t ~" b~i.m) and (t, [era', o'b']) for j ' <  t < i' and if k < 

r( i, 1)+ . . .  + r ( i, m)  then y has only ( a ~, [r ', a'+~bJ]) as successor. 

Similar s ta tements  hold for k =< l using s(j, k)  instead of r(i, k). For k = l one 

gets the same using either r(i, k)  or s(j, k),  because r(i, 1) = s(i, 1). 

PROOF. Suppose y occurs in x E Y'M' and y = xo. If l > 1 then by (2.5) 
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x_~ = (a~-2, [ trk-la ' ,  o"-lbJ]) .  If 1 - 1 > 1 we can do the same and so on and get 

x_,+~ = (j, [trk-t+~a', o-bJ]). Fu r the rmore  a l . k - , =  b~ for 0_-< t =< l - 1, because  

y E D  (cf. (2.3)). If k = l  then a i = b ~  for  O<=t<=l-1, hence  i = j .  r(i, 1 )=  

s(i, 1) => l and m = 1. (i) becomes  k = l and j = i. If k > l set z = ~b-~(x) E E I  (cf. 

w We have 

(5.6) z,=a~+k-~ f o r - k + l - t = < 0  and z ,=b~+H f o r - / + l - - < t - - < 0 .  

Hence  

(5.7) b~ = a i.~-, for  0 _-< t _-< l - 1, 

in part icular  j = bg = a~,-z, the second part  of (i). 

We  show that  for  some l' => l, bg . .  �9 b~,-~ occurs in the division of a '  into initial 

segments  of b j 's const ructed above.  Otherwise  there  would be a j '  and an h > l '  

(which we choose maximal)  such that 

b~' = ai+k-h for  O <= t <= h - 1  

(t must run until h - 1 because of (5.7) and L e m m a  4). But  then we have by (5.6) 

z, = b~'+h-t for  - h + 1 _6- < t =< 0 

and by definition of $, xo would be (a~, [o'ka ', o'hbr]), a contradict ion to Xo = y, 

because h > / .  Hence  at the (k - / ) - t h  coordinates  of a ~ there  begins an initial 

segment  of b s of the subdivision of a '  const ructed above,  i.e. for  some m, 

k -  l=  r(i, 1)+  . . .  + r(i, m - 1 )  and r(i, m ) =  > l by (5.7). This is (i). Part  (ii) is 

only a translation of (2.5) and easily verified using the definitions of r(i, k) and 

s(j ,k) .  
If k => l one  sees that l and j in y are de t e rmined  by k and i. D e n o t e  y by 

(A, i, k).  If k _-< l, k and i are de t e rmined  by l and j. D e n o t e  y by (B,j, l). We 

have to identify (A, i, k)  = (B, i, k)  for  1 <= k <= r(i, 1) = s(i, 1). Fur the rmore ,  if 

o'Pa ' = o'qa ~ (o'Pb ' = o'qb j) then (A, i,p + k)  = (A,j ,  q + k)  
((B, i, p + k)  = (B, j, q + k))  for  k _> 1. The  matrix M '  can be rewri t ten as ((ii) of 

L e m m a  12) 

(5.8) 

(A, i, k ) may be fol lowed by (A, i, k + 1) and addit ional  if 

k = r(i, 1)+  . . .  + r(i, m)  by (setting j = a',o.1) ...... (tin-l)) 

(B, j, r(i, m ) + 1) and (A, t, 1) = (B, t, 1) for  a ~ < t < b~o.,,); 

(B,j, 1) may be fol lowed by (B,j, 1 + 1) and addit ional  if 

I = s(j, 1)+ - . .  + s ( j ,m)  by (setting i = b~o.~) ...... o.,,-~)) 

A , i , s ( j , m ) +  l) and (A,t ,  1)=(B, t ,  1) for  a~o.m)<t <b~. 
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R e m a r k  t h a t  we  n e e d  L e m m a  11 to  s h o w  wr i t i ng  i '  f o r  b{~.,,~ t ha t  

(i', [oa", o- '~  = ( B , j ,  r ( i ,  m ) +  1). 

T h e  d i a g r a m  r e p r e s e n t i n g  M '  (cf. w l o o k s  l i ke  this:  

�9 > .  > �9 , .  > . . .  (A ,  1) 
) �9 

�9 >" >" ' "  > " ' "  (B, 1) 

�9 > �9 > . . .  (A ,  2) 

�9 > �9 , . . .  ( B , 2 )  

�9 , �9 ; - > �9 , �9 , . . .  ( A , n )  

" ' ' - - " - - * "  >" ' "  > " ' "  ( B , n )  

O n l y  t h e  a r r o w s  f r o m  (A ,  i, k )  t o  (A ,  i, k + 1) a n d  f r o m  (B,.h 1) t o  (B, L l + 1) a r e  

i n d i c a t e d .  If  o-Pa i = a q b  j (crVb i = cr~b j )  for  s o m e  i,] w e  can  d o  t h e  iden t i f i ca -  

t i ons  m e n t i o n e d  a b o v e  d e c r e a s i n g  t h e  n u m b e r  of  r o w s  of  l eng th  oo in t he  d i a g r a m  

( this  is i m p o r t a n t  fo r  a p p l i c a t i o n s ) .  (A ,  i )  = {(A, i, k ) :  k _-> 1}, (B , j )  = {(B,], /):  
/=>1}. 

L e t  us  n o w  r e t u r n  t o  m a x i m a l  m e a s u r e s .  T r iv i a l  e x a m p l e s  of  (/ ,  f )  w i th  m o r e  

t h a n  o n e  m a x i m a l  m e a s u r e  a r e  g i v e n  b y  t h e  g r a p h s  in F ig .  1. T h e  first  o n e  is t he  

d i s j o i n t  u n i o n  of  t w o  c o p i e s  of  t he  s a m e  d y n a m i c a l  s y s t e m .  T h e  s e c o n d  o n e  

c o n t a i n s  a l so  a w a n d e r i n g  set .  W e  sha l l  see  t ha t  e v e r y  (/ ,  f )  wi th  m o r e  t h a n  o n e  

m a x i m a l  m e a s u r e  is e s s e n t i a l l y  of  th is  fo rm.  

, / I 
I 

I I 
I I 
I I 

/ /  
I 

, . . . . .  . . . .  

I i i i i  
I 
I i /"/V 

Fig. 1. 
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A more complicated example is the following one. For n = 2 let a 1= a = 

1112121212.. . ,  b 1 = lb, a s = 2a and b 2 = b = 2211211211211 . . . .  The  diagram 

is (identifications for tra 2= a 1, trb 1 = b 2, 0-2al = 0-4aI and ~rb 2= 0"4/15) 

, �9 , �9 , �9 (B, 2) 

This has two irreducible submatrices: 

M 1 = M ' / D  1, where D 1 = {(A, 1, 1), (A, 1, 2), (B, 2, 1)}, 

M 2= M ' / D  2, where D 2= D \ D  1. 

r (M 1) = r ( M  2) = r(M'),  hence we have exactly two ergodic maximal measures. It 

is not difficult to construct a corresponding (/, [).  We have in ~7 

a < o'2b < o-a < 0"3b < 0-2a = 0-'a < lb, 2a < o'b = 0-4b < o-3a < b. 

Set ui = ~-1(0 ' ' ( la))  and v, = ~-~(o'~(lb)) for0  _- i =< 4. Then the u, and v, satisfy 

the same order relations, because ~ preserves the ordering (cf. Lemma 1), and 

/ ( u , ) =  u,+~ (u , :=  u2), / ( v , ) =  v,+~ (v , :=  vl). We join the points (u,,u,+a), 

(v,, v,+l)~ I • I with straight lines to get the graph of an f (Fig. 2). 

One can choose u~, v~ so that the slope of f is everywhere greater than 1. It is 

easy to see that 12 = [u~, v3] 13 [u2, v,] t3 [u3, v2] CI [u4, vl] is an invariant set for f. 

It is the support of one of the two ergodic maximal measures. Let 11 be the 

closure of I \ I  2. Then the support of the other ergodic maximal measure is a 

Cantor-like subset of 11, which remains after having taken away the wandering 

points of 11 . 

Exchanging the eight subintervals of I in Fig. 2 we get, putting the intervals of 

12 before those of 11, the graph in Fig. 3. 

Exchanging these intervals is an isomorphism modulo small sets (cf. w We 

get a disjoint union of two dynamical systems (/2 and a Cantor-like subset of P )  

together with a wandering set (rest of P) .  

Now we return to the investigation of ~M, determining the irreducible 

submatrices of M'  and the corresponding invariant subsets of (/, f) .  We work 

with the diagram above. This is easier than to work with the matrix M'.  
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Fig. 3. 
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If M '  is reducible, we can divide D into two disjoint subsets D ~ and D ~ such 

that M'/D ~ is irreducible and such that there may be transition from D '  to D 2, 

but not from D 2 to D 1. Hence, if (A, i, k) E D 2 then (A, i, m ) ~ D ~ for all m _-> k. 

Similarly for (B, j, k). Therefore  

D 2= U {(A,i ,k):k>=k,}  U U {(B,j ,k):k>=m,} 
i i 

for some k~, mj, l=<i,/_<-n with l<-kj, m i_---oo (k~=o* (or m,=oo)  means 

{(A, i, k ) :  k => ki} = O). Set M '  = M'/D ~ and M 2 = M'/D 2. Remember  the maps 

~o : (/, f )  ~ Z~ (w and r : ~i ~ E~' (w Let 7r : Er ~ E;  be the projection to the 

positive coordinates. Consider 

~/V/' tk-I 7r 

and denote it by X. We want to determine X ( ~ ) .  To apply r  means to 

represent a way in the diagram, which corresponds to a point in E~, by the edges 

and not by the vertices (cf. w The edges in (A, i )  are numbered by al,  a~, 

a ] , . . ,  and in (B, j )  by b{, b, j, b ~ , . . . .  Furthermore we have 

k , = r ( i ,  1 ) + . . .  +r(i, Kj) and m j = s ( j ,  1 ) + - . .  + s ( j ,M/ )  

for some K~ and Mj. r(i,k)>=mj for k > K ,  where j=a~,(,m ...... (~.k-~ and 

s(j, m ) =  > k~ for m > Mj, where i = b'so.o ...... o.m-l), because there is no transition 

from D 2 to D ~. Set 

B j = U [o  ' '( '" . . . . . .  (""a' , / , '1 ,  

where / = a i,<~.1~ ...... <u>, the union taken over all i, l such that l _-> Ki ; 

A '  = U [a', o "'~ ...... ~176 

where i = b{u,l ) ...... u,o, the union taken over all j, l such that l >= Mj. Then 

o"'BJCBPUAqU U [a',b'] = B p U A q U  U A ' = B P U A q U  U B' 
p<t<q p<t<q p<t<q 

for s o m e p ,  q with l=<p=<q=<n.  Set 

mj-I k~-I 

~?= U U o"B J U U U o"A'. 
m/<~ 1=0 k l<~  l=O 

E2 is tr-invariant and furthermore ~r o r = E 2, because zr o Ik-'(~M2) CE~ 

consist of points x one gets by starting at any point in D 2 and going any way 



234 F. HOFBAUER Israel J. Math. 

(which must  be  in D ~) and writing down the number s  of the edges on this way. 

/ :1:= ~-1(BJ)  and E~: = ~ - 1 ( A ' )  are subintervals  of I. The  same  is t rue  for  

f ' (FJ),  l _-< mj - 1 and f ' (E ' ) ,  l < k, - 1. Set [2 = X ( y ~ ) .  Then  

rai--I ki-1 

12= U U f ' ( F ' ) U  U U f ' (E ' ) .  
mi<~ I=0 ki<~ 1=0 

This is a finite union of intervals.  

Let  11 be the  closure of  1 \ [  2. This  is again a finite union of intervals.  But  there  

may  be  points  x E 11 with f t ( x ) E  [2 for  some  I. Set 121 = X(X~) .  Then  

121 = II\{x E 11 : / ' ( x ) E  I2 for  some  I} = I~ [ - ' (P) .  
l=O 

121 is invar iant  under  f and 11\121 is the  set of wander ing  points  con ta ined  in 11. 

It is not difficult to see that  X is cont inuous  and surject ive.  M 1 is i rreducible,  

hence  there  is a y E EM~ with {tr'y : l _-> 0} is dense in XM,. By continui ty of X, 

{f t(x(Y))  : l >- 0} is dense  in 121. T h e r e f o r e  1)1 is topological ly  transit ive.  

Set UI = IZ\fL and call it the uns table  set for  121, because  the points  in U1 

wande r  f rom lL  to the invar iant  set P .  If M 2 is i r reducible  then i 2 is 

topological ly  transitive. Call it 122 and set $2 = U1, the stable set of 122 (cf. the 

above  example) .  

If M 2 is reducible ,  one can divide D 2 again into an i r reducible  subset  D 3 and 

into D 4 such that  there  may be transi t ion f rom D 3 to D 4, but  not f rom D 4 to D 3. 

i3 = X ( E # )  is again a finite union of intervals,  f ( [ 3 ) C  P .  Let  12 be the closure 

of [2\[3 and 122 = (") f-'(IZ). U2= 12\122 and $2 = {x E U1 : f t ( x ) E  1"~2 for  some  

l => 1}. Now repea t  this p rocedure  again for  M 4 and so on. W e  get 121, l'~z, 

123,'" �9 C/ ,  which are / - inva r i an t  and topological ly  transit ive.  U S, = U U~ = 

I \  U l~, is the set of all wander ing  points.  R e m a r k  that  in genera l  the  12,'s are not 

disjoint.  For  i / j ,  12i tq12j is finite or  empty .  

Let  us consider  ano the r  example ,  again for  n = 2. Let  a I = a, b 1 = lb,  a 2 = 2a, 
b z =  b, where  

a = 111212211122112111212211. . .  

and 

b = 2211211122111221112. . . .  

T h e  d i ag ram is 
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We have three irreducible submatrices: 

M ~ = M ' / D  1, D ~ = {(A, 1, 1), (A, 1, 2), (B, 2, 1)}, 

M 2= M ' / D  2, D 2= {(A, 1, k), (B,2, l ) : 3 =  k _-<4,2_- < l =4},  

M3 = M ' / D  3, D3 = {(A, I, k ), (B, 2, I) : k =>5,5< l=<9}. 

One can get (I , f)  as above. 
X(E~2u~,) is as 12 in the first example. We can draw the following picture of 

this set: 

, ,  , ~ ! 

I I I t I 

0-3a crab 1' 0-5a b, a o :b  
I ! I I I I 

0-2a 0-7b 0"4a 0"911 lb  = 2a 0"4b = 0-9b 
k 

! I 

1' ~Sa tr3b 

! I 

'~ o-7a O'2 b 

I i 

o-6a orb 
./ 

V 

/ 
I /  

1~1 is a Cantor-like set as that described in the first example. Also U1 = i1\~-~], 
where 11 = I\X(~M2u~3); l-lz = ~-]{0-'b, 0-5b, o'6b, o'7b, ov8b}, a periodic orbit; 

U2 = q~-~(]0-ab, o'~a[ tO ]o:b, 0-7a[ tO ]0-6b, 0-8a[ tO ]0-7b, 0-'a[ O ]o'Sb, o'Sa [), 

which wanders to 1)3; l~3=X(EMeu~0\U2=above picture \Uz. We have 

l~] fq 1~2 = O and l~2 A 113 = l~z. 

Let us return to maximal measures. By the above results we know that, if (/, f )  

is topologically transitive, M '  must be irreducible. Hence 

Trmo~M 8. I f  (L f )  is topologically transitive, then it has unique maximal 

measure m, which is positive on every open subset of L 
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The  second part  follows, because  m o X is positive on every cylinder set in EM, 

and X is cont inuous  and surjective. Now we prove  that ( / , f )  has always only 

finitely many ergodic maximal measures.  We need  a lemma. 

LEMMA 13. Let D , , = { ( A , i , k ) , ( B , j , k ) : k > m }  and Mm =M'/Dm. Then 
r ( M , ) - o  1, as m--~oo. 

PROOF. r ( M ~ , ) = l i m ~ ~ .  D e n o t e  the number  of admissible blocks 

xyl -  �9 �9 yk of length k + 1 beginning with x E Dm such that every yl E Dr, by N~,. 

We have 

(5.9) ][M~ II1 = sup N~,. 
x ~ O  m 

Define Tk by T1 = ][Mm II1, Tk = 0 for k _-< 0 and Tk+l = Tk + Tk-m. We show by 

induction IIMR II1 =< 
Suppose II M~ II1 =< T1 for every  l _--- k. Let  x = (A, i, l). If x may be fol lowed 

only by (A, i, l + 1) then 

x Nk+l = < sup Nr, = < Tk = < Tk+l. 
y E D m  

If x may also be fol lowed by (B,j, t) say, then an arrow beginning in (A, i) af ter  

x = (A, i, l) which lands at (B, k, r)  E D,, begins at (A, i, l + m ) or  later  (cf. (5.8)). 

It may be that we can add any block of length k - 1 of e lements  in D,, af ter  

(B, j, t), but  af ter  (A, i, l) there  must follow (A, i, l + 1 ) , . . . ,  (A, i, l + m )  and then 

it may be that we c a n  add any block as above.  Hence  

Y N~+1 < sup N [  + sup Nk-m = Tk + Tk-m = Tk§ 
y E D  m y E D  m 

The re fo r e  N~,+1 =< Tk§ for all x E D,.. We  get the desired inequali ty using (5.9). 

H e n c e  we have r (M,,)  =< lim ~ =< max {I a l I , '"  ", I a,, § I}, where  a 1 , "  ", a ,  +1 

are the roots  of x " §  x '~ - 1 = 0. F rom this we get l a, I --< 1 + l a, I - ' ,  i.e. 

max {I a l I , '"  ", I am +1 I}---> 1, if m ~ ~. 

By L e m m a  13 we can choose an m, such that r(M,,) < r(M') and all but  finitely 

many D '  (index set of the i rreducible  submatr ix  M ' )  are subsets of D,,. For  such 

a D '  C Dm the corresponding subspace EM, cannot  be the support  of an ergodic 

maximal measure .  Toge the r  with T h e o r e m  6 we get 
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THEOREM 9. There are only finitely many  ergodic max ima l  measures on (I, f ) .  

Their supports are l'~' s constructed above, which are finite unions of  intervals or 

Cantor-l ike sets. Two of  them have at most finitely many  points in common.  

Exchanging intervals as in the first example  above, we get an isomorphic  

t ransformat ion ~ which is again piecewise monotonic ,  such that the supports  of  

the ergodic maximal  measures  are conta ined in intervals 11, 12, I3, -- ., which 

satisfy f(F) C Uk~=jI k. 
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