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ON INTRINSIC ERGODICITY OF
PIECEWISE MONOTONIC TRANSFORMATIONS
WITH POSITIVE ENTROPY

BY
FRANZ HOFBAUER

ABSTRACT

We consider a class of piecewise monotonically increasing functions f on the
unit interval I. We want to determine the measures with maximal entropy for
these transformations. In part I we construct a shift-space X isomorphic to (I, f)
generalizing the B-shift and another shift 3., over an infinite alphabet, which is
of finite type given by an infinite transition matrix M. X, has the same set of
maximal measures as (I, f) and we are able to compute the maximal measures of
3. In part II we try to bring these results back to (I, f). There are only finitely
many ergodic maximal measures for (I, f). The supports of two of them have at
most finitely many points in common. If (I, f) is topologically transitive it has
unique maximal measure.

PART1
0. Introduction

We consider the dynamical system (I, f), where I = [0, 1], the transformation f
on I is piecewise monotonically increasing, i.e. there are disjoint intervals
Ji,Joy -+, J. satisfying U J, =T and f 'J.- is strictly increasing and continuous. We
need two further conditions:

@ Uncof ™o, j1, -, ju} is dense in I, where 0=j,<j, < ++- <j, =1 are
the end points of the J’s, i.e. (J,, - - -, J.) is a generator for the dynamical system
L)

(b) huwp(f)>0.

Our goal is to determine the set of maximal measures, i.e. the set of those
invariant measures on (I, f), whose entropy h, is equal to the topological entropy

hioe(f) of (L f).
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For a dynamical system (X, T') we shall call N CX a small set, if for every
T-invariant measure & with u (N) =1 the entropy h, is zero. An isomorphism
modulo small sets (meaning that the two dynamical systems are isomorphic after
having taken away a small set from each one) preserves the set of maximal
measures. (Suppose p is maximal; u = rv; + (1 — r)v,, where v, is concentrated
on a small set N and », on X — N. Because h,,=0 we have h,, = (1/r)h, and
because p is maximal we have r =1 and ¢ = v,. Hence every small set is a null
set for a maximal measure.)

We construct two isomorphisms modulo small sets

¢:(Lf)—E} o)
where X} is a subshift of 2, = ({1, - - -, n}", o) and o the shift transformation, and
¥:(2p0)> (Em0)

where 3 is the natural extension of 3 (there is a 1-1 correspondence between
the set of invariant measures of a shift space and that of its natural extension
leaving the entropy invariant) and 2., is a finite type subshift of C* where C is a
countable compact set (C={1,3,3,---,0}CR). M denotes the corresponding
infinite transition matrix.

Hence we have that (3, o) has the same set of maximal measures as (I, f) via
p—oupep '=:vand vovey

3i={Xx €30 = XnXms1Xmiz " = b}

for certain a',b' €3, (1=i=n). = is with respect to the lexicographic
ordering in X,. This is a generalization of the B-shift (cf. [5]). 27 and 2 have
already been constructed in [2]. The B-shift case of ¢ and 3., can be found in [3]
and [6]. The transformation u — uM is an operator on the space of all
continuous summable functions ¥ on C with 1-norm. Let r(M) be the spectral
radius of this operator. We prove that

hes(S) = log r(M) = lim - log]| M* .

and therefore hp(f) = hiop(27) = heop(2m) = log r(M).

If M is not irreducible, we may divide M into irreducible submatrices
M',M?* M? .- For every submatrix M' there is a corresponding subshift 3.
of 2.

The maximal measures of a dynamical system form a compact convex subset
of the set of all invariant measures together with the weak* topology. Its
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extremal points are the ergodic maximal measures and such measures are always
concentrated on irreducible subsystems. Hence it suffices to consider the Zu’s.

We prove that every ergodic maximal measure is concentrated on a 3.« with
r(M')= r(M) and that on such an M’ there is at most one maximal measure
which is Markov given by

P, = %I\J/;;)_vk, and ™ = U,
where u and v are vectors satisfying uM' = r(M')u, M'v = r(M')v, u; =1 and
the inner product (u, v) = 1.

Hence to determine the set of maximal measures of (I, f) one has to look for
the irreducible submatrices M’ of M satisfying r(M') = r(M). To do this we
have to investigate the structure of M. This problem is left for the second part of
this paper.

1. The isomorphism ¢

Let (Lf) be the system described above satisfying (a). Define
i:I1-{1,2,---,n} by i(x)=k if x €J. Define ¢ : I >3, ={1,2,---,n}" by

e (x) = i(x)(fx)i(f*(x))- .

Because of (a) ¢ is injective. Define

(1.1) 3t =e(I)C3.

It is easy to see that oop = ¢ of and that ¢ and qo“lgo(I) are measurable.
We introduce the lexicographical ordering on X, and 3.

LemMa 1. x<yinl © ¢(x)<e¢(y)in 3} forx,yEL

Proor. Set x = ¢(x), y = ¢(y). Choose k sothat x, =y, (0 =i <k —1)and
X # Yo i.e. f'(x) and f'(y) are in the same J,. for 0 <i <k ~ 1. Because f|J,, is
strictly increasing, x <y & f*(x)<f*(y) and this is equivalent to x, <y, i.e.
x<y.

LEmMMA 2. 37— ¢(I) is countable and hence small.

Proor. Let x €3} ~ ¢(I), i.e. there is a sequence (r.) in I with ¢(r,)— x in
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3f. ¢(n) is a Cauchy sequence, hence also r, since the topology of 3/ is
generated by cylinder sets o[ioi; - - - ix-;] and these sets correspond to intervals
C I, whose diameter decreases to 0 as k — o (cf. (1.2) below). Let y =limr, in I
and y = ¢(y) # x, since x € ¢(I). Let m be the smallest integer with y,, # x,,
(m z0),i.e. f"(y) € J, and there is an N with f"(r.)E J, fork = N (p# q). But
f"(r)—f"(y) in I Hence f"(y) has to be an endpoint of J,, which belongs
already to J,. Hence

7o) = U ot o,
where
j’i=1ifnqo(t) if je€Ji; and j’i=li¥1j1(p(t) if ji € J.
ti L]

This set is countable.
Hence we have

THEOREM 1. ¢ : (I, f)— (2}, o) is an isomorphism modulo small sets.

To give a description generalizing that of the B-shift we have to introduce
some more notation.

o[XoX1*  Xm-i] ={y EXjor3y=xfor0=i=m -1}
denotes a cylinder set.

Teram s = Fg N TN - O f™,  CL

Xm -1

We have

(12) Q_l(o[xl) s x.,,_l]) = Jxo"'x...-l’ ¢(Jxo.~~xm~x) = o[Xo Tt x,,._I].
Define for k =1,2,--+,n

a*= lim ¢(t) (=¢@-) if i1 €L),

t€J,t | ji—y

(1.3)
b= lim ¢(t) (=¢(G) if jx €L).

PEJE T i

Set A ={a',--+,a"}, B={b",---,b"}. Remark that a* and b* begin with k.
Define G,,..., ,C2; by ({ , | denotes a closed interval in X or 3, with
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respect to the lexicographic ordering)

G,, = [ga™, ab™] = a([a*™, b™)),

1.4
(1.4) Giyor,_, = o(a*™-, b1 N Gyy..x,, ),

and Gy, .., , by the same formulas, but as subsets of 3,. Remark that G
and G..,,_, are empty or intervals in 3; or 3, respectively.

X0 Xy —1

LEMMA 3 Gxo'"xm—l =g" (o[x() M xm.—ll) (0[X() s xm-I] CE?)

ProoF BY INDUCTION. The case m =1 is trivial.

Gayoans= 0] N Gy r, )
= o (o[xn-1] N O‘m_l(o[xo Ct Xm=2]))
= 0" (o[Xo0" * " Xm-1])-

THEOREM 2. The following are equivalent:
(i) x€Zzj

(ii) a™~=0o"x =b"* for each m =0,

(i) o"x € G},.x,_, for each m = 1.

Proor. We show (i) = (ii) > (i) = (i).

Let x €3;. Then o™x €37, i.e. o"x =lim¢(y.) for suitable y, €J, , i.e.
Ji o = Y& = j», . Because of Lemma 1 we have a* = o(ye)=b*, ie. (ii).

We show the next step by induction. Because both a™ and b* begin with x, we
have that x € [a™, b™] implies ox € G}, = o([a”™, b*]). Suppose 6"x € G ... _,.
Because of (ii) we have o"x € [a*», b*»] N G,....,_,. This set is a subinterval of
[a*, b*~] and hence its endpoints both begin with x,., because a*» and b*~ do.
Therefore o™ "'x €E o([a*, b* 1N G, )= Glx,. This is (iii).

For the third implication we have to show x €37, i.e. there are y. €1
satisfying ¢ (y«)—x in 3. Choose yi €J...._,. Then ¢(y)Eo[x0- "+ x:c1],
hence ¢ (y.)— x. It suffices to show J ..., _, # &. If this set is empty we have also
Gy, =0 (@Jgn_,)) =D (cf. (1.2) and Lemma 3) and hence G, , =
(cf. (1.4)). This contradicts (iii). Hence (i) follows.

We conclude this section with a lemma we shall need later.

LEMMA 4. Letx €3 and a,b€ A (or B). If

(15) XiXj+1®* " Xjer = QoQ1° * * Gy
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and

(1.6) Xij+iXjsre1®** Xjrres = boby -+ - by
then

W) Xjsr *** Xjeres = bor o by = @1+ Qs

Proor. Suppose (1.7) is not satisfied, i.e. thereisan i (r<i=r+s—1)such
that xj., - "X =bo - bi=a - @ and Xu1=bi1> a4 (cf. (i) of
Theorem 2 and (1.5)), i.e. ¢'a > b. But this again contradicts Theorem 2, since
o'a €37 The case a,b € B is similar.

This lemma implies

(1.8) two initial segments of points in A (or B) contained in
x €3 are disjoint or the one contains the other.

2. The isomorphism

Before we go into it we consider an example. Define f: I — I by

#x +1 for 0=x =3,
f(x)=
Vx -3 for 2<x=1.
One easily sees that a'=111121121--, a’=24', b'=1b> and

b*>=2112112112- - -. We draw a diagram for X} using the G,,.

< (=02
=52

For our example we get using (1.4) for the construction (we have written a for a'
and b for b%)

[oa, b]«—[0’a, bl—][0’a, b]—I[o'a, b]— T
i[a, ob] i

[0°a, ob] <<

xml

(a, ob] [oa, 0°b]«—[0’a, 0°’b]~[0’a, b] [oa,a°b] <
[} KG K[a, cr‘b]é@
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Every path in this diagram ending not with an empty set corresponds to an
element of %7 writing 1 if the way goes up and 2 if the way goes down.
We define ¢ first on 35 by

(2.1) ¥ (x) = (xo, Gro)(xl’ GXoxn)(XZ’ G "

It means we represent x not by the edges lying on a way in the above diagram,
but by the vertices lying on this way.

By (1.4) one easily sees that each G,,...,_, is of the form [o“a, o'b], where
a€A bEB, a1 = b1 = Xp-1, Gk-j = bi—; (1 =] = min(k, 1)) and that G,...., is
then

%} if Xm < @41 OF Xp > biyy,
[e*"a, ob*"] if X = @ier and X < byay,
22) [ea*™, oc'"'b] if X = braq and X, > @i,
[0“"a,a''b]  if Xm = i1 = bisy,
[ca™, ob*] if Gy < Xm <bpi.
We set
D ={(i[0"a,0'b]):a EA,BEB,i=a,1=b, k121
@3)

and a,_; = b, for 1 = j = min(k, l)}.

Then ¢ is a map from 3} to D", but the image (2 7}) is not o-invariant. So we
have to change over to the natural extension

S;={x€X,={1,---,n}? : xXs, - - EX}foreach k € Z}.

Now let x € X, and set for each k =0
y" - llf(kak+1 PP ) = (xk; G;k)(Xk+1, kaxk+1) = H D’

i.e., we have the diagram

Yo ¥yi oy ys - =y’
ya ooyt oy oyitoys e =y
2 -2 -2 -2 -2 -2

Y32 y3I yo oy oy ys e =y

Let N be the following invariant subset of 3;:



220 F. HOFBAUER Israel J. Math.

N={x€3:Am & Z sothatVj<m,Ik =jwithx, - X = a0 Qru-s,
a€AUB and ‘- x,,-1X» is not periodic for each m}

Lemma 5. Forx €3;— N there is ay € D? with y* —>y (k > — ), i.e. the
columns in the diagram above are ultimately constant.

Proor. We show that for every m € Z there isa K with y% =y, foralli=zm
and all k =K

As x#Z N there is a K such that foreach k = K we have xi ** - X # @0 * * G
for every a €A UB or * - * X_1X. is periodic for an m and there is a periodic
point in A U B having the same period (if not, we have the first case). We
consider the first case. For each k = K divide xeX..," - - into initial segments of
points in A. This can be done in a unique way starting at the beginning of
XX+ * - - and choosing every such initial segment maximal (cf. the remark after
(1.3)). Let I be a k = K such that the first initial segment xx,, - - *x, of a™ of the
above division has the largest possible r (r < m). Then the first initial segment
Xi *++ x, of a™ for all other k = r satisfies g =r. For k </ this is because we
have chosen ! in such a way. For | <k =r (r = K) this is because of (1.8). Hence
we have for all k = K (in fact for all k =r)

y*=(xi,[oa™, - (x.[o'a%, ]) (X, [0a™, ])

The same arguments hold if we divide x.x.., - - - into initial segments of points in
B. We find an s <m such that for all k =K

Y=l ob%]) (el oY) (e[ ,ab™)

Hence for all k = K the beginning points of the above intervals do not depend
on k from the (r + 1)st coordinate onward and the endpoints of these intervals
from the (s + 1)st coordinate onward (cf. (2.1) and (2.2)). Asr <m and s <m we
have proved the first case.

The second case, where - - - x,,_;X.. is periodic for an m and there is a periodic
point in A U B having the same period, is easy and omitted. It may happen that
for the beginning points of the above intervals the first case occurs and for the
endpoints the second one, or vice versa.

Now we define (y as in Lemma 5)

2.4) ¢:3,—-~N—>D? by ¢(x)=y.

By (2.2) one sees easily that a given element (i, [o*a, o'b]) of D may be followed
in a point y € ¢(2;— N) by
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(aw,[0*'a,0b]), (i,[oa’,ob']) fora.<i<b;
(2.5) (b, [oa® o''b])  ifa.<b,

(ak, [U'k+la, O'I+1b]) if ax — bl.

Denote the corresponding transition matrix with index set D by M’. " is given
by the projection to the first component of the elements of D.

Lemma 6. Lety € D? satisfy (2.5). Then x = ¢ '(y) €3

ProorF. Wehavetoshow a™ = XX+ -+ = b* forall k € Z ((ii) of Theorem
2). Suppose y. = (xi,[0'a, 0°b]), a € A, b € B. Then xi = a,_; = b,-, (cf. (2.3))
and hence a™ = 0" 'a and b* = o*7'b ((ii) of Theorem 2). Therefore it suffices
to show

(2.6) g'a= Xk+1Xk+2" " * =0o'b.

Because of (2.3) and (2.5) we have a, = xi., = b,. If equality does not hold our
lemma is proved. Suppose for t = 1

2.7 AQri1” " Qrve-1= Xiee1Xi+2 ' ° " Xicrre

We have to show a,., = x...... Because of (2.3) and (2.5) it follows from (2.7) that
Yiser = (X [0 'a, ]). As above we have from (2.3) that a,. = Xc1s1.

The same arguments show that xi.Xx.2* = 0°b.

It is easy to see that ¢ and ¢ ' are measurable and that ¢ commutes with the
shift transformation. Hence ¢ is an isomorphism between 3; — N and the finite
type subshift of D given by (2.5). ‘

We make D? compact. D is a countable set. Let C be its one-point
compactification by adding say 0. We take the closure of (5; — N)in C*. This is
again a finite type subshift of C* with transition matrix M (index set C)
satisfying M l D = M’'. We denote it by 2. It is easy to see that one gets M by
adding to (2.5): 0 follows only after 0 and 0 may be followed by every element of
D which may itself follow after infinitely many elements of D and by 0.

Hence 3, — (2; — N) consists of all points, for which there is an m € Z with
yi =0 for all k =m. Hence

LEMMA 7. 2y — ¢(Z;— N) is small.

To prove that N is small we remark that N = UN,, the union taken over all



222 F. HOFBAUER Israel J. Math.

a € A U B, which are not periodic, where

N.= U o ,ﬁ O’ AP R )

j€Z

It suffices to prove that N, is small (N, is invariant). This is done in [3] for the
B-shift and exactly the same proof works for N, using Lemma 4 or (1.8) instead
of the lemma used there. Hence

Lemma 8. N is small.
All this together gives

THEOREM 3. ¢ : (3, 0)— (B, o) is an isomorphism modulo small sets.

3. A formula for A,

To compute the topological entropy h.(27) = limlog V' n., where n, is the
number of admissible blocks of length k in 3%, we introduce the following sets of
blocks, where k =1 and i € D:

./V,: = {X()xl st Xg-1 - o[Xo e xk—1] # Qin 2-;, ll/(xl) et xk—l) ends with i}'

Set Ni =card ¥} and N, = (Ni)iep, a vector in I,

We obtain the set M., by adding an x, to Xxo--- X1 € U, N}, such that
o[Xo- - - x«] CX7} is not empty and that y(x, - - - xi ) ends with j. This is possible for
all blocks xo - * - Xi—; in Ny, if i may be followed by j in 2, i.e. M; = 1. Hence we
have, as x. has to be equal to the first component of j (cf. (2.1)),

Nia= > Ni=3 M\Ni ie. Neci=NM.

My =1 i€D

From this one gets N, = NNM™ (N, =(1,--,1,0,0,---) n ones). As n, =
INc|h = ZiepNi& (Ni has only finitely many entries # 0) we have

hee(S7) = lim - log | N,M* | = lim 1 log | M* |,

because with increasing k, N;M'™ = N, becomes positive on every coordinate
and hence on every irreducible subset of the index set D of M'. We have
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THEOREM 4. hioo(f) = heop(27) = heop(Car) = log r(M').

ReMark. If we consider M as an operator on the space of all continuous
summable functions on C={1,3,5,---,0}CR with l-norm, then |[M*|,=
| M’ ]l;, hence r(M) = r(M’) and h..,(2;) = r(M). In what follows we can restrict
ourselves again to D and M’, because %, — 2 is a nullset for every maximal
measure. We have introduced C and M only to get a compact dynamical system.

4. Eigenvectors of M’

Now divide M’ into irreducible submatrices M, M?, M, - - - (if we divide M
into irreducible submatrices we get the same M"’s plus the 1 X 1 matrix indexed
by {0} = C — D). We are interested in ergodic maximal measures, which are
concentrated on subshifts 2, of 2, corresponding to the submatrices M*. Fix an
M’ and denote it by L and its index set by E CD. What follows is a slight
generalization of a result in [6]. Suppose there is a maximal measure u
concentrated on 3,.

LemMa 9. u is a Markov measure given by

“ (O[yo T Yk—I]) = WYOPyohPYle e P)’k—zh—l
for suitable = (m:)ice and P = (Py)ujeexe Satisfying

i = 0, }’,’,’ = O and }),',' = 0 if L,',' = 0,
4.1)
> mPi=m > m=1 2 P,=1 foreachi€€E.
i€E i€cE jEE
ProofF. Set m = u(o[i]) and Py = p (o[ij])/p (o[i]).- Then (4.1) is satisfied. Let

m be the corresponding Markov measure.
Set a = {|[i]}ice- Then

h, = H,(a ,k!1 o a)=H,(a l o'a)=H,(a|o'a)=h,

and equality holds only if 4 = m by a theorem of Parry as in [6]. Because u is
maximal we have u = m is Markov.
Now assign to every pair (i, j) € E X E with L; = 1 a variable Xj satisfying

42) X;z0, 2 X;= 2 Xi (i€E), 2 X,=1

=1 jLy= iLy=1
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Set X = (Xj). There is a 1-1 correspondence between (7, P) satisfying (4.1) and
X satisfying (4.2) via X, = mP; and m = Z, X, P; = X;;/Z« Xi. The entropy of u
iS H(7T, P) = - 2.“,' 77','1),',' lOg Pi,'. Deﬁne

HEO = -3 Xylog X, + 3 (Z X, )iog (= X:)

the entropy of X. Then corresponding (7, P) and X have the same entropy. Now
every maximal measure concentrated on 2, corresponds to an X satisfying (4.2),
for which H(X) attains its supremum log r(M’).

Lemma 10. Suppose H attains its supremum in X. Then X;; > 0 for every (i, )
Wlth Lij =1.

Proor. Suppose Xi;, =0 and L,; = 1. Because of the irreducibility of L we
can find i, is,- -, i, = ip such that L;;, ., =1 (0=I=r—1) and not all X,; ,=0.
Without loss of generality assume X, # 0. Set K = {(i;, i;+1) :0 =] = r — 1}. Then
by (4.2) 2, X;, = £, X,; = X, >0. Define X'(¢) by

X;i/(1+re) L) EK,
X:,' =

(X +e)(1+re) (i,))EK;

g1~

X'(¢) satisfies (4.2). Set f(g) = H(X'(¢))— H(X). One has, because of X; =0
and 3, X;, >0, f'(e)—>» as £ >0. Hence there is an ¢ >0 with H(X'(g)) >
H(X), a contradiction to X maximal.

Now we know that H attains its supremum only in the interior of its domain
determined by (4.2). By Lagrange’s method the function

f A )= HOO+ 3 (S X, = 3 %) + (S x,-1)
i€E i i Li
has to satisfy for a maximal X:

—L(X) 0, —i(X) o, Lx=o.

This gives

4.3) Y X, =exp(A,~ A —«k)X., VrswithL,=1;
ig=1

@.4) 2 Xi= 2 X, Vi€E;

SLy=1 hLly=1



Vol. 34, 1979 INTRINSIC ERGODICITY 225

4.5) > X, =1
By (4.3) we have
exp(A, — A — k)X, = exp(A — A — k)X, if L,=L,=1,

i.e. exp(A, — A) X, = X,, and hence summing over ¢ with L, =1,

exp(A)X 2 exp(-)= 3 X,

tL,= i, =1

and again by (4.3)
exp().,)X,s‘LE=1 exp(—A)=exp(A, — A, — k)X, if L,=1.
Because X, >0 we get
(4.6) 215 L. exp(— A) = exp(— k)exp(— A,), Vr€E.
Again (4.3) gives
exp(A,) Z X, = exp(A, — k)X, if L,=1,
or

2 exp(A,) 2 X,; = exp(A, — k) 2 X, Vs €EE,
JLy=1 rLg=1

rL,=1

i.e.

4.7 2 (exp(/\,)i,l_”z=1 X,,) L,, = exp(— «) (exp()\s) ,,,2;1 X,,) .

reE

Hence for the eigenvalue exp(— «) the matrix L has a left eigenvector u
(u, = exp(A,) 2; X,;) by (4.7) and a right eigenvector v (v, = exp(— A,)) by (4.6)
satisfying (u, v) = Z,,X,; = 1. Furthermore exp(— « ) has to be the spectral radius
A of L. We have got that, if there is a maximal measure (7, P) concentrated on
3., there exists such a pair (4, v) of eigenvectors of L as above (for the
eigenvalue A = r(L)) satisfying (u, v) = 1. One gets

(48) i = Wb, P; = Lv;/Av.

This measure has entropy log A = logr(L). Hence by its maximality r(L)=
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r(M’). On the other hand one sees easily that (7, P) given by (4.8) gives rise to a
measure p on 3, with entropy log A. Hence we have

THEOREM 5. Every ergodic maximal measure of 3. is concentrated on a 2.y
satisfying r(M’) = r(M). For such an M there is a 1-1 correspondence between the
set of maximal measures on 2 and {(u,v):uM' =r(M')u, M'v = r(M')y,
(u,v)=1, u, =1}

Now we can use a result of Krieger [4] for the irreducible submatrices M* of
M’ satisfying r(M*) = r(M’).

Suppose w; and w, are two ergodic maximal measures on Xy« Then
p =3(u:i+p2) is also maximal. Let v be the Markov measure given by
Py = pG[ij ]/ Gli]) and m = u([i]). v is ergodic by theorem 7.16 of [1],
because P; is irreducible (u (o[if]) >0 for all (i, j) with M =1 by Lemma 10).
Hence v# p, because u is not ergodic. By the proof of Lemma 9 we have
h., > h,, a contradiction to the assumption that w,, 4, and hence also u have
maximal entropy. Hence we have

THEOREM 6. If M’ satisfies r(M') = r(M’), then there is at most one maximal
measure on 2., which is Markov given by (4.8).

ReMARK. From this and Theorem 5 it follows that for such an M’ there is at
most one pair of vectors (i, v) satisfying the conditions in Theorem 5. I have also
a direct proof for this result using the special structure of M’, but this is much
more complicated than Krieger’s method.

Summarizing the results about 2. we get

THEOREM 7. (i) hip(Zar) = log r(M’).

(ii) Every ergodic maximal measure is concentrated on a 3. satisfying
r(M’)=r(M").

(iii) For every such M’ there is at most one maximal measure concentrated on

E M.
PART 11

The second part of this paper is devoted to the investigation of the matrix M’
found in the first part.
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First we introduce a more convenient notation for the index set D of M'. Then
we look for the irreducible submatrices M’ and determine the corresponding
invariant subsets of (I f) getting a nice picture of the structure of this
transformation. We deduce that (I, f) has only finitely many ergodic maximal
measures and determine their supports. If (I, f) is topologically transitive, it has
unique maximal measure, which is positive on every open subset of I.

5. We introduce a new notation for the index set D of M’. Consider
A={a',--,a"}and B={b",---,b"} (cf. (1.3)). Take an a' and divide it into
initial segments of b’’s in the following way. a’ begins with an initial segment of
b’ of length at least one. Denote the length of this segment by r(i, 1). i.e. ai = b}
for k =0,---,r(i,1)=1 and aiuy# biuy. At this r(i,1)-th coordinate there
begins an initial segment of b’ for j = a,,, of length r(i,2) = 1, and so on. So we
get a division of a' into initial segments of b’’s in a unique way. For m = 0 we
have

af(i,1)+,..+,(i‘,,.)+k = b{(, 0sk= r(i, m+ 1)— 1, ] = ai(i_1)+-~~+r(i,m),
(5.1)

a lr(-‘,1)+~~~+r(.',m+1) # blr(i,m+1),

Similarly we divide b’ € B into initial segments of a’’s and denote their lengths
by s(jk)for1=j=n and k= 1.

We have r(i,1)=s(i,1), 1=i=n and r(i,k)= 1, s(j, k)= 1. We can assume
r(i,k)<o, s(,k)<w. If r(i,k)=« for some i,k we have for m =
r(i, 1)+ -+~ +r(i,k — 1), o™a' = b’ for j = a,., i.e. o[as ‘- - a,.] consists of one
point. Substituting a' by

a=a; -(am+as - -(ai+ai---

we get a new shift space forbidding the block a, ---a,, i.e. we take away
countably many points. Note that a,, + 1= bli«—1y= n, where j = aiansrrix-2)-
LemMA 11. There are maps R,S : N — N such that
r(i, m) = s(j, 1) + e+ S(j, R(m )), j = a',(,-_l)+...+,(.~,,.,_1).

s(j, m) = r(i, 1) + e 4+ r(i, S(m )), i= b(,(j,l)+...+,0,m_1).

Proor. We prove the first equation. We have by (5.1)

i j .
@ rGyrrrm-tyrk = D, 0=k <r(i,m),

(52)
a :(i,l)+---+r(i,m) < b,r(i.m)~
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Choose | so that
(5.3) s+ - +s@D=r@Gm)<s@ D+ - +s(G, 1+ 1)

and set R(m)=1I This is uniquely determined. We have by definition that
s(,1)+ -« +s(j, R(m))=r(i, m). Suppose

(5.9) sG, )+ - +s@G, R(m))<r(i,m).
By (5.3) we have r(i,m)<s(j,1)+ --- + s(j, R(m)+ 1) and by (5.1)

bl rsiromper = @i forsomeh and0=k <s(j,R(m)+1).
Hence
(5.5) bl = ai-sgy-msiremy, S+ +sGRmM)=k =r(i,m).
We get by (5.2) and (5.5)

i _ .k
a 'r(i,l)+--~+r(i,m—l)+k = Q-s1)~—s(,R(m))

fors(j,1)+ - -+ +s(j, R(m)) = k <r(i, m) (this set of k’s is not empty because of
(5.4)) and

i h
A nttrim) < @ limy-s G- —sG.R(m).

This is a contradiction to a’ €3} (cf. Theorem 2). This proves the converse
inequality and the lemma is proved.

Lemma 12. Let y = (ak-1,[0"a’,0'b’])) € D such that it occurs in 3, and
suppose k = I. There is a unique m such that

rGD+ - +r(im-D<k=r@i1)+ - - +r(im-1)+r@,m).
Then
@ I=k-r(i1)—---—r(i,m—1) and j = a\-,
(i) if k =r(i,1)+ --- +r(i,m) then y has successors (j',[c*"'a’,ab")), j' =
ai, (i’,[oa’,a"*™*'b']), i' = bim, and (1, [oa’,ob’]) for j'<t<i’' and if k <
r(i,1)+ «-+ +r(i,m) then y has only (ai,[0"“""a’,0''b"]) as successor.

Similar statements hold for k = using s(j, k) instead of r(i, k). For k = I one
gets the same using either r(i, k) or s(j, k), because r(i,1) = s(i, 1).

Proor. Suppose y occurs in x €3, and y =x,. If [>1 then by (2.5)
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x_1=(ak-3[c“'a’, o' 'b’]). If | —1>1 we can do the same and so on and get
X-11=(j,[0*"""a’, ob’]). Furthermore ai..-,=b) for 0=t=1-1, because
y €D (cf. 2.3)). If k =1 then a;=b) for 0=t =1-1, hence i =j. r(i,1)=
s(i,1)=zlandm =1.(i))becomes k =l andj=iIf k >1setz = ¢y (x) E 3 (cf.
§2). We have

(5.6) z.=aiw, for —k+1=t=0 and z =bl,, for —I+1=:=0.
Hence
(57) b], = a:+k-1 for0=t=1- 1,

in particular j = b)= a-, the second part of (i).

We show that for some I' = I, b} - - - b/_, occurs in the division of a’ into initial
segments of b’’s constructed above. Otherwise there would be a j’ and an h > I
(which we choose maximal) such that

b’,"=a§+.H. for0=t=h-1
(¢ must run until A — 1 because of (5.7) and Lemma 4). But then we have by (5.6)
2, = bl for ~h+1=t=0

and by definition of §, x, would be (ai,[oc“a’,"b"]), a contradiction to x, =y,
because h > I. Hence at the (k — I)-th coordinates of a’ there begins an initial
segment of b’ of the subdivision of a’ constructed above, i.e. for some m,
k—1=r(@,1)+ -+ +r(@i,m—1) and r(i, m)=1 by (5.7). This is (i). Part (ii) is
only a translation of (2.5) and easily verified using the definitions of r(i, k) and
s(, k).

If k =1 one sees that [ and j in y are determined by k and i. Denote y by
(A, k). If k=] k and i are determined by / and j. Denote y by (B,},{). We
have to identify (A, i, k)= (B,i, k) for 1=k =r(i,1) = s(i,1). Furthermore, if
ag’a’ = o'a’ (o"b' = o'b’) then (A i,p+k)=(A,j,q+k)
((B,i,p + k)= (B,j,q + k)) for k = 1. The matrix M’ can be rewritten as ((ii) of
Lemma 12)

(A, i, k) may be followed by (A, i, k + 1) and additional if
k=r(i,1)+ -+ +r(i,m) by (setting j = @’y srim-1)
(B,j,r(i,m)+1)and (A, t,1)= (B,t,1)for ax <t < bi;my
(B, j,1) may be followed by (B, j, I+ 1) and additional if
I=sG, )+ -+ +s(j,m) by (setting i = bl iye.ssgm-1)
A,i,s(jym)+1) and (A, 1,1)= (B, 1) for aty. <t <bl

(5.8)
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Remark that we need Lemma 11 to show writing i’ for b/, that

(i, [oa", c" ™' ) = (B, j,r(i,m) +1).
The diagram representing M’ (cf. §2) looks like this:

P PP Dt — . — “ee (A,l)

‘ — . 5 . . . (B’l)
. e (A,2)

T TS e (B,2)

R c—_— . . (A, n)
—. . . . . (B’n)

Only the arrows from (A, i, k) to (A, i, k + 1) and from (B, j,I) to (B, ,! + 1) are
indicated. If o”a’ = o*b’ (o°b’ = o*b’) for some i,j we can do the identifica-
tions mentioned above decreasing the number of rows of length « in the diagram
(this is important for applications). (A,i)={(A,i k):k =1}, (B,j)= {(B,j,1):
=1}

Let us now return to maximal measures. Trivial examples of (I, f) with more
than one maximal measure are given by the graphs in Fig. 1. The first one is the
disjoint union of two copies of the same dynamical system. The second one
contains also a wandering set. We shall see that every (I, f) with more than one
maximal measure is essentially of this form.

T
1
|
1
i
i
|
|
|
|

T
'
[
'
|
|
!
|
|
1
!
1
|
|
1

Fig. 1.
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A more complicated example is the following one. For n =2 let a'=a =
1112121212+ -+, b' = 1b, a®*=2a and b*>= b = 2211211211211 - - - . The diagram
is (identifications for ca’=a’', gb' = b*, 0’a’ = o*a’ and ob’ = o*b?)

(A1)

(B,2)

i ==
N

This has two irreducible submatrices:
M'=M'[D, where D'={(A,1,1),(A,1,2),(B,2,1)},
M?*= M'|D? where D?= D\D".

r(M?') = r(M? = r(M’), hence we have exactly two ergodic maximal measures. It
is not difficult to construct a corresponding (I, f). We have in %}

a<o’b<oa<o’h<o’a=o‘a<lb, 2a<ob=o0'b<c’a<hbh.

Set u; = ¢ '(o'(la))and v, = ¢ (¢’ (1b)) for 0 = i = 4. Then the u; and v; satisfy
the same order relations, because ¢ preserves the ordering (cf. Lemma 1), and
fw) =i (Usi=uy), f(0.)=0vin (va:=v). We join the points (u;, Ui.y),
(v, vir1) € I X I with straight lines to get the graph of an f (Fig. 2).

One can choose u;, v; so that the slope of f is everywhere greater than 1. It is
easy to see that I” = [u;, v3] U [us, v4] U [us, v2] U [us, 0] is an invariant set for f.
It is the support of one of the two ergodic maximal measures. Let I' be the
closure of I\I°. Then the support of the other ergodic maximal measure is a
Cantor-like subset of I', which remains after having taken away the wandering
points of I'.

Exchanging the eight subintervals of I in Fig. 2 we get, putting the intervals of
I? before those of I', the graph in Fig. 3.

Exchanging these intervals is an isomorphism modulo small sets (cf. §0). We
get a disjoint union of two dynamical systems (I” and a Cantor-like subset of I")
together with a wandering set (rest of I').

Now we return to the investigation of 2,  determining the irreducible
submatrices of M’ and the corresponding invariant subsets of (I, f). We work
with the diagram above. This is easier than to work with the matrix M'.
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If M’ is reducible, we can divide D into two disjoint subsets D' and D? such
that M'/D" is irreducible and such that there may be transition from D' to D?,
but not from D*to D'. Hence, if (A, i, k) € D*then (A,i,m)€ D*forallm = k.
Similarly for (B, j, k). Therefore

D*= U {(Aik):kzk}u U {(B,j k): k = m,}

for some k, m, 1=ij=n with 1Sk, m; = (k; =0 (or m; =®) means
{(A,i,k): k 2 k}=). Set M' = M'/D" and M* = M'/D* Remember the maps
o :(Lf)— 35 (81)and ¢ : 3; = 2 (82). Let 7 : 2 — 2} be the projection to the
positive coordinates. Consider

ot

Som

3,3 —L 5 (Lf)

and denote it by x. We want to determine x(2uz). To apply ¢ ™' means to
represent a way in the diagram, which corresponds to a point in 2, by the edges
and not by the vertices (cf. §2). The edges in (A, i) are numbered by ai, a5,
ai,--- and in (B,j) by bi, b}, bi,---. Furthermore we have

ki=r(@, 1)+ ---+r(i,Ki) and m; =s@, 1)+ --- +s(, M)

for some K; and M, r(i,k)=m; for k > K, where j= a,uyssrix-n and
s(j,m)Z k; for m > M, where i = b’1)+....sgm-1), because there is no transition
from D? to D'. Set

B = U [o_r(i,l)+---+r(i,l)ai, bj]’

where j = a.u1y++rap, the union taken over all i, [ such that | = K;;
Ai = U [ai’ a_s(j,l)+~~~+s(j,l)bi],
where i = bliy....s¢1), the union taken over all j,! such that | = M,. Then
oc™B'CB?*UA‘U \J [a,b']=B*UA‘U |U A'=B?UA‘U |J B’

p<t<q p<t<q p<t<q

for some p,q with 1=p =g =n. Set
mj-—l ) k-1 .
¥=UJ UeB UU U A’
my<w =0 ki<w 1=0

3? is o-invariant and furthermore 7 oy 7'(Sp2) = 3%, because 7oy '(Sa2) CX}
consist of points x one gets by starting at any point in D” and going any way
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(which must be in D?) and writing down the numbers of the edges on this way.
F':=¢7Y(B’) and E':= ¢ '(A’) are subintervals of I The same is true for
f{(F), I=m;—1and f'(E'), =k — 1. Set I*= y(S\2). Then

m.—1 k,—1 .
F=U UrEuy Ure)
This is a finite union of intervals.

Let I' be the closure of I\I” This is again a finite union of intervals. But there
may be points x € I' with f'(x) € I” for some L Set Q, = y(Ss:). Then

Q=I'{xeI':f'(x)€ I*forsome I} = rj] f({a.

Q, isinvariant under f and I'\(), is the set of wandering points contained in I'.

It is not difficult to see that y is continuous and surjective. M is irreducible,
hence there is a y € 3, with {oy : 1 = 0} is dense in Z,e. By continuity of y,
{f'(x(y)): 1= 0} is dense in Q,. Therefore (, is topologically transitive.

Set U, =I'\Q), and call it the unstable set for {);, because the points in U,
wander from ), to the invariant set I>. If M? is irreducible then I? is
topologically transitive. Call it {2, and set S;= U,, the stable set of Q, (cf. the
above example).

If M? is reducible, one can divide D? again into an irreducible subset D> and
into D* such that there may be transition from D’ to D*, but not from D*to D>,

I’ = x () is again a finite union of intervals, f(I*) C I*. Let I? be the closure
of I\P* and Q,= N f'(I?). U,=I, and S,={x € U,: f'(x) € Q, for some
Iz 1}. Now repeat this procedure again for M* and so on. We get Q;, Q,,
Qs, -+ CI, which are f-invariant and topologically transitive. U S, = U U, =
I\UQ; is the set of all wandering points. Remark that in general the Q,’s are not
disjoint. For i# j, Q; NQ; is finite or empty.

Let us consider another example, again forn =2. Leta'=a, b' = 1b, a’ = 2a,
b*= b, where

a =111212211122112111212211 - - -

and

b =2211211122111221112 - - -.

The diagram is
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. . PP P ey e ¢ ——— >+ ——>

(=
v

We have three irreducible submatrices:
M'=M'ID', D'={A,1,1),(A,1,2),(B,2,1)},
M?*=M'ID? D*={(A,1,k),(B,2,1):3=sk=4,2=1=4},
M*=M'ID?, D*={(A,1,k),(B,2,1):k=55=s1=9}

One can get (I, f) as above.
x Cm2ums) is as I7 in the first example. We can draw the following picture of

this set:

oa b 1Y o’a o’b
a’b 1 o’a b a o’b 1Y oa a’b
o’b o‘a c’a 1b=2a o'b=0c"b o’a ob
- J
iy
-_

—~ / /

Q\ /
Q, is a Cantor-like set as that described in the first example. Also U, = I'\Q},,
where I' = I\x Cmeune); Q2= ¢ {o*b, 0°b, 0°b, 0'b, 0°b}, a periodic orbit;

U.= ¢ '(Jo*b,0%a[U)o’b,c’a[U]a°b, a*a[ U]a'b, 0*a[ U]o®b, o’al),

which wanders to Qi; Q:= x(Emzum)\U.= above picture \U,. We have
0 NQ=J and QN Q3= (D,

Let us return to maximal measures. By the above results we know that, if (I, f)
is topologically transitive, M’ must be irreducible. Hence

TueoreM 8. If (I,f) is topologically transitive, then it has unique maximal
measure m, which is positive on every open subset of I



236 F. HOFBAUER Israel J. Math.

The second part follows, because m o x is positive on every cylinder set in 3,
and y is continuous and surjective. Now we prove that (I, f) has always only
finitely many ergodic maximal measures. We need a lemma.

Lemma 13. Let D. ={(A,i,k),(B,j,k):k=m} and M, = M'ID,.. Then
r(M,))—1, as m >,

Proor. r(M,)=1limV|Mk]|,. Denote the number of admissible blocks
xy;- - y. of length k + 1 beginning with x € D,, such that every y, € D,, by Ni.
We have

(5.9 M|l = sup Ni.
x€D,,

Define Ti by T,=| M|, T« =0 for k =0 and Ti.i = Ti + Ti-.. We show by
induction [Mx [, = T..

, Suppose |[M.. |, = T, for every I = k. Let x = (A,i,1). If x may be followed
only by (A, i1+ 1) then

:+1 = sup Nz = Tk = Tk+1.
YEDy,

If x may also be followed by (B, j, t) say, then an arrow beginning in (A, i) after
x = (A, i, 1) which lands at (B, k, r) € D,, begins at (A, i, ] + m) or later (cf. (5.8)).
It may be that we can add any block of length k — 1 of elements in D,. after
(B, j,t), but after (A, i, I) there must follow (A, i, I+ 1),---,(A,i,I + m) and then
it may be that we can add any block as above. Hence

Nia=sup NI+ supNi_.=Ti+ T = Tirr.

yED,, yYED,,

Therefore Ni.i = Ty, for all x € D,.. We get the desired inequality using (5.9).
Hence we have r(M, ) =lim V' T, = max{|ai|, - *,| @m1[}, Where ay, - - -, @mss
are the roots of x™*'— x™ —1=0. From this we get |a;|=1+|a:[™, i.c.

max{{a,|, -, | @mui[}>1, if m >,

By Lemma 13 we can choose an m, such that r(M,,) < r(M’) and all but finitely
many D' (index set of the irreducible submatrix M') are subsets of D,,.. For such
a D' CD,, the corresponding subspace ¢ cannot be the support of an ergodic
maximal measure. Together with Theorem 6 we get



Vol. 34, 1979 INTRINSIC ERGODICITY 237

THEOREM 9. There are only finitely many ergodic maximal measures on (I, f).
Their supports are ();’s constructed above, which are finite unions of intervals or
Cantor-like sets. Two of them have at most finitely many points in common.

Exchanging intervals as in the first example above, we get an isomorphic
transformation f, which is again piecewise monotonic, such that the supports of
the ergodic maximal measures are contained in intervals I',I* I°,-- -, which
satisfy f(I')C U, ;I
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